1.) DATE: 04/13/10
2.) COMMUNITY COLLEGE: Maricopa Co. Comm. College District

3.) COURSE PROPOSED: Prefix: PSY Number: 275 Title: Biopsychology Credits: 4

<table>
<thead>
<tr>
<th>CROSS LISTED WITH: Prefix:</th>
<th>Number:</th>
<th>; Prefix:</th>
<th>Number:</th>
<th>; Prefix:</th>
<th>Number:</th>
</tr>
</thead>
</table>

4.) COMMUNITY COLLEGE INITIATOR: L. TRAN·NGUYEN
PHONE: 480-461-7925

ELIGIBILITY: Courses must have a current Course Equivalency Guide (CEG) evaluation. Courses evaluated as NT (non-transferable are not eligible for the General Studies Program.

MANDATORY REVIEW:

☐ The above specified course is undergoing Mandatory Review for the following Core or Awareness Area (only one area is permitted; if a course meets more than one Core or Awareness Area, please submit a separate Mandatory Review Cover Form for each Area).

POLICY: The General Studies Council (GSC-T) Policies and Procedures requires the review of previously approved community college courses every five years, to verify that they continue to meet the requirements of Core or Awareness Areas already assigned to these courses. This review is also necessary as the General Studies program evolves.

AREA(S) PROPOSED COURSE WILL SERVE: A course may be proposed for more than one core or awareness area. Although a course may satisfy a core area requirement and an awareness area requirement concurrently, a course may not be used to satisfy requirements in two core or awareness areas simultaneously, even if approved for those areas. With departmental consent, an approved General Studies course may be counted toward both the General Studies requirements and the major program of study.

5.) PLEASE SELECT EITHER A CORE AREA OR AN AWARENESS AREA:

Core Areas: Natural Sciences (SG)
Awareness Areas: Select awareness area...

6.) On a separate sheet, please provide a description of how the course meets the specific criteria in the area for which the course is being proposed.

7.) DOCUMENTATION REQUIRED

☒ Course Description
☒ Course Syllabus
☒ Criteria Checklist for the area
☒ Table of Contents from the textbook required and/or list of required readings/books
☒ Description of how course meets criteria as stated in item 6.

8.) THIS COURSE CURRENTLY TRANSFERS TO ASU AS:

☐ DEC prefix
☐ Elective

Current General Studies designation(s): None

Effective date: 2011 Spring Course Equivalency Guide

Is this a multi-section course? ☒ yes ☐ no

Is it governed by a common syllabus? ☒ yes ☐ no

Chair/Director: SUSAN KARPINSKI

Correct CEG List:
PSY Dept Elective Credit

Effective Date:
Proposer: Please complete the following section and attach appropriate documentation.

ASU-[SG] CRITERIA

I. - FOR ALL GENERAL [SG] NATURAL SCIENCES CORE AREA COURSES, THE FOLLOWING ARE CRITICAL CRITERIA AND MUST BE MET:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Criterion</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑</td>
<td>☐</td>
<td>1. Course emphasizes the mastery of basic scientific principles and concepts.</td>
<td>See Attached</td>
</tr>
<tr>
<td>☑</td>
<td>☐</td>
<td>2. Addresses knowledge of scientific method.</td>
<td>See Attached</td>
</tr>
<tr>
<td>☑</td>
<td>☐</td>
<td>3. Includes coverage of the methods of scientific inquiry that characterize the particular discipline.</td>
<td>See Attached</td>
</tr>
<tr>
<td>☑</td>
<td>☐</td>
<td>4. Addresses potential for uncertainty in scientific inquiry.</td>
<td>See Attached</td>
</tr>
<tr>
<td>☑</td>
<td>☐</td>
<td>5. Illustrates the usefulness of mathematics in scientific description and reasoning.</td>
<td>See Attached</td>
</tr>
<tr>
<td>☑</td>
<td>☐</td>
<td>6. Includes weekly laboratory and/or field sessions that provide hands-on exposure to scientific phenomena and methodology in the discipline, and enhance the learning of course material.</td>
<td>See Attached</td>
</tr>
<tr>
<td>☑</td>
<td>☐</td>
<td>7. Students submit written reports of laboratory experiments for constructive evaluation by the instructor.</td>
<td>See Attached</td>
</tr>
<tr>
<td>☑</td>
<td>☐</td>
<td>8. Course is general or introductory in nature, ordinarily at lower-division level; not a course with great depth or specificity.</td>
<td>See Attached</td>
</tr>
</tbody>
</table>

II. - AT LEAST ONE OF THE ADDITIONAL CRITERIA THAT MUST BE MET WITHIN THE CONTEXT OF THE COURSE:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Criterion</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑</td>
<td>☐</td>
<td>A. Stress understanding of the nature of basic scientific issues.</td>
<td>See Attached</td>
</tr>
<tr>
<td>☑</td>
<td>☐</td>
<td>B. Develops appreciation of the scope and reality of limitations in scientific capabilities.</td>
<td>See Attached</td>
</tr>
<tr>
<td>☐</td>
<td>☑</td>
<td>C. Discusses costs (time, human, financial) and risks of scientific inquiry.</td>
<td></td>
</tr>
</tbody>
</table>
Course Prefix | Number | Title | Designation
--- | --- | --- | ---
PSY | 275 | Biopsychology | SG

Explain in detail which student activities correspond to the specific designation criteria. Please use the following organizer to explain how the criteria are being met.

<table>
<thead>
<tr>
<th>Criteria (from checksheet)</th>
<th>How course meets spirit (contextualize specific examples in next column)</th>
<th>Please provide detailed evidence of how course meets criteria (i.e., where in syllabus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- See detailed explanation containing information requested in this table on attached pages.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1- See detailed explanation containing information requested in this table on attached pages.
I. Critical criteria for General [SG] Natural Sciences core area courses:
 1. **Course emphasizes the mastery of basic scientific principles and concepts.**
 a. **How course meets spirit:**
 Students will be introduced to the multidisciplinary field of biopsychology to understand the biological basis of behavior and mental processes. Thus, each topic covered in the course involves the integration of knowledge from various neuroscience fields such as neuroanatomy, neurochemistry, neuroendocrinology, neuropathology, neuropharmacology, and neurophysiology.
 b. **Course competencies met:**
 1. Describe the organization of the nervous system and communication mechanisms within the nervous system.
 2. Compare and contrast brain research methods.
 4. Using brain models, identify important structures and circuits.
 5. Hypothesize how nervous system damage would specifically impact behavior.
 6. Explain the development of the nervous system.
 c. **Evidence in syllabus and textbook:**
 All chapters covered in the syllabus involve the coverage of knowledge gained from various related neuroscience fields. Specifically:
 Chapter 3: Anatomy of the NS
 Lab: sheep brain and coloring book
 Chapter 4: Neural Conduction/Synaptic Transmission
 Lab: Neuron Model building; EEG and consciousness research study; S.G. worksheets
 Chapter 10: Neuroplasticity
 Lab: EEG & memory research study
 Chapter 11: Learning and Memory
 Lab: EEG & memory research study; S.G. worksheets
 Chapter 13: Hormones and Sex
 Lab: “Sex Unknown” case study; S.G. worksheets
 Chapter 17: Stress and Emotions
 Lab: EKG research experiment; S.G. worksheets
 Chapter 15: Drug Addiction and Reward Circuits
 Lab: drug abuse and addiction simulated lab; S.G. worksheets
 Chapter 18: Biopsychology of Psychiatric Disorders
 Lab: S.G. worksheets.
2. **Addresses knowledge of scientific method. (This criteria is met by the competencies and activities listed under criteria 3 below.)**

3. **Includes coverage of the methods of scientific inquiry that characterize the particular discipline.**
 a. **How course meets spirit:**
 Biopsychology is an empirical science that gains knowledge about the underlying biological basis of behavior and mental processes through converging lines of evidence from experimental studies using animal models and quasi-experimental and correlational research from human patients. Various aspects of the scientific process are emphasized to students throughout the course including the cooperative nature, nonlinear steps guided by empirical questions, development of hypotheses, data collection/analysis, and formulation of scientific inferences.
 b. **Course competencies met:**
 2. Compare and contrast brain research methods.
 3. Follow sensory and motor pathways and structures through the nervous system.
 5. Hypothesize how nervous system damage would specifically impact behavior.
 7. Describe the functions of brain areas involved in higher level information processing, including memory and learning.
 8. Discuss the neural and hormonal control of sleep, eating behavior, and sexual behavior.
 11. Apply the concepts of lateralization to language.
 12. Identify the causes and treatment of neurological disorders and psychological disorders.
 c. **Evidence in syllabus:**
 The following chapters cover the general characteristics of research approaches common to the field of biopsychology. Specifically:
 Chapter 1: Biopsychology as a Neuroscience
 Lab: critical thinking
 Chapter 5: Research Methods
 Chapter 6: Visual System
 Lab: S.G. worksheets
 Chapter 7: Perception & Awareness
 Lab: EEG & consciousness research study; S.G. worksheets
 Chapter 10: Neuroplasticity
 Lab: EEG & memory research study
 Chapter 11: Learning and Memory
Lab: EEG & memory research study; S.G. worksheets
Chapter 12: Hunger, Eating, and Health
Lab: Taste demonstration; S.G. worksheets
Chapter 13: Hormones and Sex
Lab: “Sex Unknown” case study; S.G. worksheets
Chapter 17: Stress and Emotions
Lab: EKG research experiment; S.G. worksheets
Chapter 18: Biopsychology of Psychiatric Disorders
Lab: S.G. worksheets

4. Addresses potential for uncertainty in scientific inquiry.
 a. How course meets spirit:
 Biopsychology research relies on experimental studies using
 animal models and quasi-experimental and correlational research from
 human patients. Although studies using animal models are generally well-
 controlled, the differences in animal nervous system compared to human
 nervous system are potential concerns and limitations that warrant
 uncertainty in the inferences that can be made from animal samples to the
 human population. In addition, quasi-experimental and correlational
 approaches from neuropsychological research lack experimental control
 and thus, also limit inferences that can be made from brain damaged
 human patients. Strengths and weaknesses of scientific
 inferences/conclusions are emphasized in regards to the limitations of the
 particular research design used.
 b. Course competencies met:
 2. Compare and contrast brain research methods.
 3. Follow sensory and motor pathways and structures through the nervous
 system.
 5. Hypothesize how nervous system damage would specifically impact
 behavior.
 7. Describe the functions of brain areas involved in higher level
 information processing, including memory and learning.
 11. Apply the concepts of lateralization to language.
 12. Identify the causes and treatment of neurological disorders and
 psychological disorders.
 c. Evidence in syllabus:
 Scientific inferences and the limitations and potential design flaws of
 research studies are discussed throughout the chapter readings and
 emphasized in lectures. Specifically:
 Chapter 1: Biopsychology as a Neuroscience
Lab: critical thinking
Chapter 5: Research Methods
Lab: S.G. worksheets
Chapter 6: Visual System
Lab: S.G. worksheets
Chapter 7: Perception & Awareness
Lab: EEG & consciousness research study; S.G. worksheets
Chapter 10: Neuroplasticity
Lab: EEG & Memory research study
Chapter 11: Learning and Memory
Lab: EEG & Memory research study; S.G. worksheets
Chapter 12: Hunger, Eating, and Health
Lab: Taste demonstration; S.G. worksheets
Chapter 17: Stress and Emotions
Lab: EKG research experiment; S.G. worksheets
Chapter 18: Biopsychology of Psychiatric Disorders
Lab: S.G. worksheets

5. Illustrates the usefulness of mathematics in scientific description and reasoning. (This criteria is met by the competencies and activities listed under criteria 7 below).

6. Includes weekly laboratory and/or field sessions that provide hands-on exposure to scientific phenomena and methodology in the discipline, and enhance the learning of course material.
 a. How course meets spirit:
 The Biopsychology course engages students in hands-on laboratory activities at least twice a week. Study guide labs (SG-Labs) involve hands-on activities in the form of worksheets that are constructed to help students to focus on critical outcomes of topics covered in the unit. Research labs (Res.-Labs) involve 3 formal research studies that involve the reading of journal articles, design of research, data collection, writing lab reports, and oral presentations.
 b. Course competencies met:
 1. Describe the organization of the nervous system and communication mechanisms within the nervous system.
 2. Compare and contrast brain research methods.
 3. Follow sensory and motor pathways and structures through the nervous system.
 4. Using brain models, identify important structures and circuits.
 5. Hypothesize how nervous system damage would specifically impact behavior.
6. Explain the development of the nervous system.
7. Describe the functions of brain areas involved in higher level information processing, including memory and learning.
8. Discuss the neural and hormonal control of sleep, eating behavior, and sexual behavior.
10. Predict the effects certain types of drugs would have on the brain and on behavior.
11. Apply the concept of lateralization to language.
12. Identify the causes and treatment of neurological disorders and psychological disorders.

c. Evidence in syllabus:
SG-Labs are set up to help student learn and review basic brain anatomy through sheep brain dissections, anatomy coloring book, 3-D model building, demonstrations, question and answer, fill-in the blank worksheets. Specifically:
Lab 1: critical thinking
Lab 2-5: sheep brain dissection and coloring book
Lab 6: Neuron Model building; neurotransmission S.G. worksheets
Lab 7: Development S.G. worksheets
Lab 10: “Genie” case study Q&A worksheet
Lab 11: Visual system S.G. worksheets
Lab 12: Perception and awareness S.G. worksheets
Lab 13: Learning and memory S.G. worksheets
Lab 15: Taste demonstration; hunger, eating, health S.G. worksheets
Lab 16: “Sex Unknown” case study Q&A worksheets; hormones and sex S.G. worksheets
Lab 20-21: drug abuse and addiction simulated lab worksheets
Lab 22: Biopsychology of psychiatric disorders S.G. worksheets

Res.-Labs are set up to help students engage in the scientific process:
Labs 7-9: EEG and consciousness research study
labs 12-14: EEG and memory research study
labs 17-19: EKG and mental and physical arousal research experiment

7. Students submit written reports of laboratory experiments for constructive evaluation by the instructor.

a. How course meets spirit:
The Biopsychology course engages students in three formal research studies that provide them with direct experience on the scientific research process. Students develop their ideas based on the materials provided in
lecture and through the reading of journal articles. They then engage with other students and the professor to design the research. Following data collection on each other, they analyze and graph the data using SPSS. Finally, students write up formal lab reports and present their findings to the class in oral group presentations.

b. Course competencies met:
 1. Describe the organization of the nervous system and communication mechanisms within the nervous system.
 2. Compare and contrast brain research methods.
 7. Describe the functions of brain areas involved in higher level information processing, including memory and learning.

c. Evidence in syllabus:
 Res.-Labs are set up to help students engage in the scientific process. Specifically:
 Chapter 1: Neural conduction; synaptic transmission
 Labs7-9: EEG and consciousness research study
 Chapter 11: Learning and memory
 Labs12-14: EEG and memory research study
 Chapter 17: Stress and emotion
 Labs17-19: EKG and mental and physical arousal research experiment.

8. Course is general or introductory in nature, ordinarily at lower-division level; not a course with great depth or specificity.

a. How course meets spirit:
 All course competencies are addressed in lecture and discussed in the text (Biopsychology 7th edition by Pinel) in general terms that are intended to provide students with an introduction to the various areas of biopsychology. This book was chosen specifically because the “emphasis of Biopsychology is on broad themes rather than details.” After completing the course, students will have a basic understanding of the biological basis of behavior and cognition that will provide the foundation for more advanced biological psychology courses.

b. Course competencies met:
 1. Describe the organization of the nervous system and communication mechanisms within the nervous system.
 2. Compare and contrast brain research methods.
 3. Follow sensory and motor pathways and structures through the nervous system.
 4. Using brain models, identify important structures and circuits.
5. Hypothesize how nervous system damage would specifically impact behavior.
6. Explain the development of the nervous system.
7. Describe the functions of brain areas involved in higher level information processing, including memory and learning.
8. Discuss the neural and hormonal control of sleep, eating behavior, and sexual behavior.
10. Predict the effect certain types of drugs would have on the brain and on behavior.
11. Apply the concepts of lateralization to language.
12. Identify the causes and treatment of neurological disorders and psychological disorders.

c. Evidence in syllabus and textbook:
All chapters covered in the syllabus involve the coverage of knowledge at an introductory level. Specifically:
Chapter 1: Biopsychology as a Neuroscience
 Lab: critical thinking
Chapter 3: Anatomy of the NS
 Lab: sheep brain dissection and coloring book
Chapter 4: Neural Conduction/Synaptic Transmission
 Lab: Neuron Model building; EEG and consciousness research study; S.G. worksheets
Chapter 5: Research Methods
Chapter 6: Visual System
 Lab: S.G. worksheets
Chapter 7: Perception & Awareness
 Lab: S.G. worksheets
Chapter 9: Development of the Nervous System
 Lab: “Genie” case study; Worksheets
Chapter 10: Neuroplasticity
 Lab: EEG & memory research study
Chapter 11: Learning and Memory
 Lab: EEG & memory research study; S.G. worksheets
Chapter 12: Hunger, Eating, and Health
 Lab: Taste demonstration; S.G. worksheets
Chapter 13: Hormones and Sex
 Lab: “Sex Unknown” case study; S.G. worksheets
Chapter 15: Drug Addiction and Reward Circuits
 Lab: drug abuse and addiction simulated lab; S.G. worksheets
II. Additional Criteria that must be met within the context of the course:

A. Stresses understanding of the nature of basic scientific issues.
 a. How course meets spirit:
 Students are taught course competencies 1-12 with an underlying theme that biopsychology is an empirical science. As an empirical science, attempts are made to understand and explain the relationship between the nervous system and behavior and mental processes through the use of various research approaches. The research questions selected for investigation can be influenced by the social, cultural and historical environment, and generally involve a collective effort by many psychologists. As a behavioral science, biopsychology produces explanations about natural world phenomena that are empirically-based, logical, testable, verifiable, creative, theory-laden, durable, tentative, collaborative, and cumulative. Lectures and chapters covered in the course emphasize the nature of these basic scientific issues. Students are also assessed on their understanding of the nature of science (NOS) at the beginning of the course in Lab1: Pre-NOS and again at the end of the semester in Lab 23: Post-NOS.
 d. Course competencies met:
 1. Describe the organization of the nervous system and communication mechanisms within the nervous system.
 2. Compare and contrast brain research methods.
 3. Follow sensory and motor pathways and structures through the nervous system.
 4. Using brain models, identify important structures and circuits.
 5. Hypothesize how nervous system damage would specifically impact behavior.
 6. Explain the development of the nervous system.
 7. Describe the functions of brain areas involved in higher level information processing, including memory and learning.
 8. Discuss the neural and hormonal control of sleep, eating behavior, and sexual behavior.
 10. Predict the effect certain types of drugs would have on the brain and on behavior.
 11. Apply the concepts of lateralization to language.
12. Identify the causes and treatment of neurological disorders and psychological disorders.

e. Evidence in syllabus and textbook:
 All chapters covered in the syllabus involve the coverage of the nature of biopsychological science. Specifically:
 Chapter 1: Biopsychology as a Neuroscience
 Lab: critical thinking; Pre-nature of science measure (Pre-NOS)
 Chapter 3: Anatomy of the NS
 Lab: sheep brain dissection and coloring book
 Chapter 4: Neural Conduction/Synaptic Transmission
 Lab: Neuron Model building; EEG and consciousness research study; S.G. worksheets
 Chapter 5: Research Methods
 Chapter 6: Visual System
 Lab: S.G. worksheets
 Chapter 7: Perception Awareness
 Lab: S.G. worksheets
 Chapter 9: Development of the Nervous System
 Lab: “Genie” case study; S.G. worksheets
 Chapter 10: Neuroplasticity
 Lab: EEG & memory research study
 Chapter 11: Learning and Memory
 Lab: EEG & memory research study; worksheets
 Chapter 12: Hunger, Eating, and Health
 Lab: Taste demonstration; S.G. worksheets
 Chapter 13: Hormones and Sex
 Lab: “Sex Unknown” case study; S.G. worksheets
 Chapter 15: Drug Addiction and Reward Circuits
 Lab: drug abuse and addiction simulated labs; S.G. worksheets
 Chapter 17: Stress and Emotions
 Lab: EKG research experiment; S.G. worksheets
 Chapter 18: Biopsychology of Psychiatric Disorders
 Lab: S.G. worksheets; Post-NOS measures

B. Develops appreciation of the scope and reality of limitations in scientific capabilities.

 a. How course meets spirit:
 Biopsychology research involves three dimensions including:
1. The disadvantages and advantages of using human participants and animal subjects, 2. The difference and connection between applied vs. pure research, and 3. The limitations of using experimental vs. nonexperimental research. Students learn to appreciate that the differences between animal and human nervous systems are potential concerns and limitations that warrant uncertainty in the inferences that can be made from animal samples to the human population. In addition, students realize that although quasi-experimental, correlational, and case study approaches from neuropsychological research lack experimental control, results can converge with findings from well-controlled animal experiments. Strengths and weaknesses of scientific inferences/conclusions are emphasized in regards to the limitations of the particular research design used in all chapters covered in the course.

b. Course competencies met:
1. Describe the organization of the nervous system and communication mechanisms within the nervous system.
2. Compare and contrast brain research methods.
3. Follow sensory and motor pathways and structures through the nervous system.
4. Using brain models, identify important structures and circuits.
5. Hypothesize how nervous system damage would specifically impact behavior.
6. Explain the development of the nervous system.
7. Describe the functions of brain areas involved in higher level information processing, including memory and learning.
8. Discuss the neural and hormonal control of sleep, eating behavior, and sexual behavior.
10. Predict the effect certain types of drugs would have on the brain and on behavior.
11. Apply the concepts of lateralization to language.
12. Identify the causes and treatment of neurological disorders and psychological disorders.

c. Evidence in syllabus and textbook:
All chapters covered in the syllabus involve the coverage of scientific knowledge gained through various research methods and the limitations of inferences made from studies using such methods. Specifically:
Chapter 1: Biopsychology as a Neuroscience Lab: critical thinking
Chapter 3: Anatomy of the NS
Lab: sheep brain dissection and coloring book
Chapter 4: Neural Conduction/Synaptic Transmission
 Lab: Neuron Model building; EEG and consciousness research study; S.G. worksheets
Chapter 5: Research Methods
Chapter 6: Visual System
 Lab: S.G. worksheets
Chapter 7: Perception & Awareness
 Lab: S.G. worksheets
Chapter 9: Development of the Nervous System
 Lab: “Genie” case study; S.G. worksheets
Chapter 10: Neuroplasticity
 Lab: EEG & memory research study
Chapter 11: Learning and Memory
 Lab: EEG & memory research study; S.G. worksheets
Chapter 12: Hunger, Eating, and Health
 Lab: Taste demonstration; S.G. worksheets
Chapter 13: Hormones and Sex
 Lab: “Sex Unknown” case study; S.G. worksheets
Chapter 15: Drug Addiction and Reward Circuits
 Lab: drug abuse and addiction simulated labs; S.G. worksheets
Chapter 17: Stress and Emotions
 Lab: EKG research experiment; S.G. worksheets
Chapter 18: Biopsychology of Psychiatric Disorders
 Lab: S.G. worksheets
Official Course Description: MCCCD Approval: 6-23-09

PSY275 2010 Spring - 9999

Biopsychology

Biological foundations of sensation, perception, motivation, emotion, cognition and psychopathology. Designed for students in the life sciences.
Prerequisites: PSY101 with a grade of "C" or better or permission of Instructor.

MCCCD Official Course Competencies:

PSY275 2010 Spring - 9999 Biopsychology
1. Describe the organization of the nervous system and communication mechanisms within the nervous system. (I)
2. Compare and contrast brain research methods. (I)
3. Follow sensory and motor pathways and structures through the nervous system. (II)
4. Using brain models, identify important structures and circuits. (II, IV, V, VII)
5. Hypothesize how nervous system damage would specifically impact behavior. (III)
6. Explain the development of the nervous system. (III)
7. Describe the functions of brain areas involved in higher level information processing, including memory and learning. (IV)
8. Discuss the neural and hormonal control of sleep, eating behavior, and sexual behavior. (V)
9. Describe brain circuits and structures associated with emotions. (V)
10. Predict the effects certain types of drugs would have on the brain and on behavior. (VI)
11. Apply the concept of lateralization to language. (VII)
12. Identify the causes and treatment of neurological disorders and psychological disorders. (VIII)

MCCCD Official Course Outline:

PSY275 2010 Spring - 9999 Biopsychology
I. Foundations of Biopsychology
 A. Nervous system organization
 B. Neuronal communication
 C. Neuroanatomy
 D. Brain research methods
II. Sensory and Motor Systems
A. Visual system
B. Auditory system
C. Somatosensory systems
D. Chemical sense systems
E. Motor Systems

III. Nervous System Development & Plasticity
A. Prenatal neurodevelopment
B. Postnatal neurodevelopment
C. Neuroplasticity
D. Nervous system damage
E. Treatment of nervous system damage

IV. Cognition
A. Memory
B. Learning

V. Motivation and emotion
A. Hunger and eating
B. Sexual behavior
C. Sleep and dreaming
D. Emotion

VI. Health psychology
A. Psychotropic drugs
B. Stress

VII. Brain Lateralization
A. Split brain
B. Language

VIII. Psychopathology
A. Affective disorders
B. Anxiety disorders
C. Schizophrenia
Biological Psychology (PSY 275; Lecture and Lab)
Spring Semester 2010

Professor: Dr. L. Tran-Nguyen (pronounced Chun-Win)
Office/phone: Psychology building 43 Office C; phone 480-461-7925; lytran@mesacc.edu
Office Hrs: MWF: 9-10; TR: 11:45-12:45
Text: Biopsychology 7th ed.
By John Pinel

Official course description: This course is designed to provide students with a basic understanding of biopsychological concepts including brain anatomy, neural communication, sensation, perception, motivated behaviors, learning and memory, addiction and psychiatric disorder.

In addition to learning new facts, you will be asked to think critically, write clearly, and participate and communicate your ideas. There is a heavy workload, but there are lots of opportunities to demonstrate what you are learning.

Course requirements: Students are responsible for the information contained in all course handouts, including the syllabus and its amendments. Handouts will be passed out once in class. If you miss class, it is your responsibility to make arrangements to obtain missing notes and handouts PRIOR TO THE NEXT CLASS. It is recommended that you exchange phone numbers with three classmates for this purpose. Students must complete all assignments and tests in order to receive a passing grade.

Readings: Students are expected to complete reading assignments prior to the class period for which they are listed. You are responsible for all materials assigned, whether or not it is discussed in class (unless otherwise specified).

Supplies: You will need color pencils for this class. In addition, throughout the semester you may be asked to spend approximately $5-10 on supplies for class projects.

Attendance Policy: Attendance will be taken at every class. Attendance points are incorporated in the lab assignments (see below). I have the option of dropping you from the course if you have excessive absences (3 or more) any time during the semester. If you feel you cannot complete the course, it is YOUR RESPONSIBILITY TO OFFICIALLY WITHDRAWAL yourself from the course. Failure to OFFICIALLY WITHDRAWAL will result in a FAILING GRADE.

Excused absences will be given only for documented school sponsored activities, jury duty, and medical emergencies. A doctor’s appointment is NOT an excused absence. You are aware of our class meeting time so DON’T schedule an appointment during class time.
Special Needs: If you have a disability or a special problem that may affect your learning, please notify me and contact the Disability Resources and Services so that we can make appropriate accommodations (DRS 480-461-7447; bldg 37).

Individual Meetings: I am available during my office hours. If you are unable to meet me during the specified office hours listed above, come talk to me and we can arrange a better time for you. I encourage everyone to take advantage of my office hours so that I may better facilitate your learning needs.

Lab assignments: In-class/outside of class assignments will be given regularly to enhance your understanding of concepts covered in the text and/or class.

Study Guide (SG) Labs: Some labs are constructed to help you study for the upcoming exam and will be due on the day of the exam, BEFORE the exam. SG labs should be completed fully, as accurate as possible, and organized. Labs that are incomplete and/or sloppily done, will receive '0' points. Late labs will be accepted ONLY with a documented excuse as specified in the attendance policy.

Research Labs: You will also have 3 formal lab write-ups that involve the reading of journal articles, data collection, written paper, and oral presentation. More will be discussed in class, but see the attached for general lab write-up format. Formal labs require class presence and participation. YOU WILL NOT BE ABLE TO MAKE UP THE DATA COLLECTION AND PRESENTATION part of the lab unless you have a documented excuse (see attendance policy). These lab write-ups will be graded. Labs turned in late will be lowered one letter grade for each day over the due date.

Grades will be based on the following tentative point distribution:

<table>
<thead>
<tr>
<th></th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 1</td>
<td>100</td>
</tr>
<tr>
<td>Test 2</td>
<td>100</td>
</tr>
<tr>
<td>Test 3</td>
<td>100</td>
</tr>
<tr>
<td>Test 4</td>
<td>100</td>
</tr>
<tr>
<td>Test 5</td>
<td>100</td>
</tr>
<tr>
<td>Formal Labs</td>
<td>150(3 at 50 points each)</td>
</tr>
<tr>
<td>Study Guide Labs</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>775</td>
</tr>
</tbody>
</table>

Final Grading Scale:

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Letter Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>90.0-100</td>
<td>A</td>
</tr>
<tr>
<td>80.0-89.9</td>
<td>B</td>
</tr>
<tr>
<td>70.0-79.9</td>
<td>C</td>
</tr>
<tr>
<td>60.0-69.9</td>
<td>D</td>
</tr>
<tr>
<td>0-59.9</td>
<td>F</td>
</tr>
</tbody>
</table>

Tests (1-5): Tests are an opportunity for feedback as well as evaluation. Tests will cover the lecture material, chapter readings, and handouts. It will consist of multiple choice questions, true/false, fill-in the blanks, and short essays. Students are responsible for
going over the answers, identifying their errors, and understanding what answer was expected and why. You will need to come to my office during office hours to examine your test.

Make-up Test Policy: Missed tests can only be made up for documented excuses if arrangements are made with the instructor PRIOR to the exam date, except with proof of medical emergency. All make-up exams are given during Final exam week.

* TENTATIVE Schedule: The instructor reserves the right to add, delete, or change this list. Any changes will be announced in class.

<table>
<thead>
<tr>
<th>Date</th>
<th>Lecture</th>
<th>Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan. 18</td>
<td>MLK Day-NO SCHOOL</td>
<td>NO LAB</td>
</tr>
<tr>
<td>20</td>
<td>Syllabus; Chpt. 1 Biopsychology as a Neuroscience</td>
<td>Lab 1: Pre-NOS; Critical thinking</td>
</tr>
<tr>
<td>25</td>
<td>Chpt. 5 Res. methods/3 Anatomy of the NS</td>
<td>Lab 2: Coloring book</td>
</tr>
<tr>
<td>27</td>
<td>Chpt. 3</td>
<td>Lab 3: Coloring book</td>
</tr>
<tr>
<td>Feb. 1</td>
<td>Chpt. 3</td>
<td>Lab 4: Sheep brain</td>
</tr>
<tr>
<td>3</td>
<td>Chpt. 3</td>
<td>Lab 5: Sheep brain</td>
</tr>
<tr>
<td>8</td>
<td>Test1</td>
<td>NO LAB</td>
</tr>
<tr>
<td>10</td>
<td>Chpt. 4 Neural conduction; synaptic transmission</td>
<td>Lab 6: Neuron model; SG. worksheets</td>
</tr>
<tr>
<td>15</td>
<td>President's Day-NO SCHOOL</td>
<td>NO LAB</td>
</tr>
<tr>
<td>17</td>
<td>Chpt. 4</td>
<td>Lab 7: EEG & consciousness res.; SG. worksheets</td>
</tr>
<tr>
<td>22</td>
<td>Chpt. 9 Development of the Nervous System</td>
<td>Lab 8: EEG & consciousness res.</td>
</tr>
<tr>
<td>24</td>
<td>Chpt. 9/ Chpt. 10 Neuroplasticity</td>
<td>Lab 9: EEG & consciousness res. analysis</td>
</tr>
<tr>
<td>Mar. 1</td>
<td>Test2</td>
<td>NO LAB</td>
</tr>
<tr>
<td>3</td>
<td>Chpt. 6 Visual System</td>
<td>Lab 10: Ethics of ‘Genie’ case</td>
</tr>
<tr>
<td>8</td>
<td>Chpt. 6</td>
<td>Study; Language development</td>
</tr>
<tr>
<td>10</td>
<td>Chpt. 7 Perception/Awareness</td>
<td>Lab 11: SG. worksheets</td>
</tr>
<tr>
<td>15</td>
<td>SPRING BREAK</td>
<td>NO LAB</td>
</tr>
<tr>
<td>17</td>
<td>SPRING BREAK</td>
<td>NO LAB</td>
</tr>
<tr>
<td>22</td>
<td>Chpt. 7; Chpt. 11 Learning and Memory</td>
<td>Lab 13: EEG & Memory research expt.</td>
</tr>
<tr>
<td>24</td>
<td>Chpt. 11</td>
<td>Lab 14: EEG & Memory research presentation</td>
</tr>
<tr>
<td>29</td>
<td>Test 3</td>
<td>NO LAB</td>
</tr>
<tr>
<td>31</td>
<td>Chpt. 12 Hunger, Eating, and Health</td>
<td>Lab 15: Taste demonstration; SG. worksheet</td>
</tr>
<tr>
<td>April 5</td>
<td>Chpt. 12/13 Hormones and sex</td>
<td>Lab 16: ‘Sex unknown’ case study</td>
</tr>
<tr>
<td>7</td>
<td>Chpt. 13</td>
<td>Lab 17: EKG research design; SG. worksheet</td>
</tr>
<tr>
<td>12</td>
<td>Chpt. 17 Stress and emotions</td>
<td>Lab 18: EKG research experiment</td>
</tr>
<tr>
<td>14</td>
<td>Chpt. 17</td>
<td>Lab 19: EKG research presentation</td>
</tr>
<tr>
<td>19</td>
<td>Test 4</td>
<td>NO LAB</td>
</tr>
<tr>
<td>21</td>
<td>Chpt. 15 Drug Addiction and Reward Circuits</td>
<td>Lab 20: Drug abuse & addiction I</td>
</tr>
<tr>
<td>26</td>
<td>Chpt. 15</td>
<td>Lab 21: Drug abuse & addiction II</td>
</tr>
<tr>
<td>28</td>
<td>Chpt. 18 Biopsychology of Psychiatric Disorders</td>
<td>Lab 22: SG. Worksheets</td>
</tr>
<tr>
<td>May 3</td>
<td>Chpt. 18</td>
<td>Lab 23: Class evaluation; Post-NOS</td>
</tr>
<tr>
<td>5</td>
<td>Test 5</td>
<td>NO LAB</td>
</tr>
<tr>
<td>12</td>
<td>Final exam</td>
<td></td>
</tr>
</tbody>
</table>

Pre-NOS = pretest on the Nature of Science
SG. Worksheet = study guide worksheets
Post-NOS = posttest on the Nature of Science
To: Dr. L. T. L Tran-Nguyen
Professor, Mesa Community College

Name:

Phone number:

Email:

Name and number of person to contact in case of emergency:

Year in school and major:

Career goals:

Additional MCC policies:

MCC Early Alert Program (EARS): Please note the following quote from MCC’s administration: “Mesa Community College is committed to the success of all our students. Numerous campus support services are available throughout your academic journey to assist you in achieving your educational goals. MCC has adopted an Early Alert Referral System (EARS) as part of a student success initiative to aid students in their educational pursuits. Faculty and Staff participate by alerting and referring students to campus services for added support. Students may receive a follow up call from various campus services as a result of being referred to EARS. Students are encouraged to participate, but these services are optional. Early Alert Web Page with Campus Resource Information can be located at: http://www.mesacc.edu/students/ears.”

MCC Refund Policy: Please note the important change in refund policy as quoted from the Spring 2010 schedule: “You can drop or add classes to your schedule anytime during the registration period listed in the calendar at the beginning of this class schedule. If you add a class and then decide you don’t want to attend the class, you must withdrawal from the class during the refund period or you will be charged full tuition and fees.”

I have read the syllabus, and understand the policies:

1. I understand that absences will affect my final grade. I am responsible for obtaining lecture notes, handouts, and assignments resulting from my absence PRIOR to the next class meeting from one of my classmates that I have exchanged phone numbers.

2. I understand that assignments not turned in on the scheduled due date will be lowered one letter grade for each subsequent day overdue.

3. I understand that I must notify my instructor if I must miss a test PRIOR to the scheduled date and that the make-up test for non-excused absences will be given during the last day of class as the make-up test.

4. I understand it is a good idea to keep a photocopy of all my assignments until I receive my final grade.

My signature confirms that I agree to abide by the course policies:

Signature: ___________________________
Semester: ___________________________
Course: ___________________________
Lab Write-up Instructions

Objective: to understand the information that should be contained in the Lab report.

A. Introduction and hypothesis. Read the assigned journal article for the lab. Using your own words, briefly summarize the research hypothesis, method and major findings in the study. This summary should be no more than 200 words. Using the findings from this journal article, develop a research hypothesis for the present lab proposal.

B. Methods: Your Method section should include the following subsections:
1. Participants, 2. Materials, and 3. Procedures. After reading your Methods section, one should be able to replicate your experiment. The following describes the details that should be included in each of these subsections.

Participants:
-who you studied and their characteristics
 -gender, mean age, race/ethnicity and any pertinent characteristics of the sample
- how many took part in the study

Materials
-any materials needed to replicate your experiment
-describe non-standard materials
-if use questionnaire:
 -briefly describe type of questions, scale used, what high vs. low score on your questionnaire reflects in terms of the variable being measured
 -should include questionnaire used in study and refer to the appendix within the text

Procedure
-chronological description of how study was conducted (includes any specific instructions given to participants)
-describe how participants were assigned to groups (if you had separate groups)

C. Results. Your results should include the data collection sheet, graph(s) and the verbal description of your findings. Finally, a concluding statement should indicate whether the data are in the direction of your research hypothesis.

D. Reference. APA format for journal articles:

Brief Contents

Part One
What Is Biopsychology?

1. Biopsychology as a Neuroscience
 - What Is Biopsychology, Anyway? 1

Part Two
Foundations of Biopsychology

2. Evolution, Genetics, and Experience
 - Thinking about the Biology of Behavior 19
3. The Anatomy of the Nervous System
 - The Systems, Structures, and Cells That Make Up Your Nervous System 51
4. Neural Conduction and Synaptic Transmission
 - How Neurons Send and Receive Signals 76
5. The Research Methods of Biopsychology
 - Understanding What Biopsychologists Do 101

Part Three
Sensory and Motor Systems

6. The Visual System
 - How We See 129
 - How You Know the World 161
8. The Sensorimotor System
 - How You Move 187

Part Four
Brain Plasticity

9. Development of the Nervous System
 - From Fertilized Egg to You 214

Part Five
Biopsychology of Motivation

10. Brain Damage and Neuroplasticity
 - Can the Brain Recover from Damage? 236
11. Learning, Memory, and Amnesia
 - How Your Brain Stores Information 264

Part Six
Disorders of Cognition and Emotion

12. Hunger, Eating, and Health
 - Why Do Many People Eat Too Much? 293
13. Hormones and Sex
 - What's Wrong with the Mamawawa? 320
14. Sleep, Dreaming, and Circadian Rhythms
 - How Much Do You Need to Sleep? 347
15. Drug Addiction and the Brain’s Reward Circuits
 - Chemicals That Harm with Pleasure 373

16. Lateralization, Language, and the Split Brain
 - The Left Brain and the Right Brain of Language 400
17. Biopsychology of Emotion, Stress, and Health
 - Fear, the Dark Side of Emotion 431
18. Biopsychology of Psychiatric Disorders
 - The Brain Unhinged 455
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xxii</td>
</tr>
<tr>
<td>To the Student</td>
<td>xxix</td>
</tr>
<tr>
<td>About the Author</td>
<td>xxx</td>
</tr>
</tbody>
</table>

Part One

What Is Biopsychology?

1. Biopsychology as a Neuroscience
 What Is Biopsychology, Anyway?
 The Case of Jimmie G., the Man
 Frozen in Time
 Four Major Themes of This Book
 What Is Biopsychology?
 What Is the Relation between Biopsychology and the Other Disciplines of Neuroscience?

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>What Types of Research Characterize the Biopsychological Approach?</td>
<td>4</td>
</tr>
<tr>
<td>Human and Nonhuman Subjects</td>
<td>4</td>
</tr>
<tr>
<td>Experiments and Nonexperiments</td>
<td>5</td>
</tr>
<tr>
<td>Pure and Applied Research</td>
<td>7</td>
</tr>
<tr>
<td>What Are the Divisions of Biopsychology?</td>
<td>8</td>
</tr>
<tr>
<td>Physiological Psychology</td>
<td>9</td>
</tr>
<tr>
<td>Psychopharmacology</td>
<td>9</td>
</tr>
<tr>
<td>Neuropsychology</td>
<td>9</td>
</tr>
<tr>
<td>The Case of Mr. R., the Brain-Damaged Student Who Switched to Architecture</td>
<td>9</td>
</tr>
<tr>
<td>Psychophysiology</td>
<td>10</td>
</tr>
<tr>
<td>Cognitive Neuroscience</td>
<td>11</td>
</tr>
<tr>
<td>Comparative Psychology</td>
<td>11</td>
</tr>
<tr>
<td>Converging Operations: How Do Biopsychologists Work Together?</td>
<td>12</td>
</tr>
<tr>
<td>Scientific Inference: How Do Biopsychologists Study the Unobservable Workings of the Brain?</td>
<td>13</td>
</tr>
<tr>
<td>Critical Thinking about Biopsychological Claims</td>
<td>14</td>
</tr>
<tr>
<td>Case 1: José and the Bull</td>
<td>15</td>
</tr>
<tr>
<td>Case 2: Becky, Moniz, and Prefrontal Lobotomy</td>
<td>15</td>
</tr>
<tr>
<td>Themes Revisited</td>
<td>17</td>
</tr>
<tr>
<td>Think about It</td>
<td>18</td>
</tr>
<tr>
<td>Key Terms</td>
<td>18</td>
</tr>
</tbody>
</table>
Part Two
Foundations of Biopsychology

2 Evolution, Genetics, and Experience 19
Thinking about the Biology of Behavior

2.1 Thinking about the Biology of Behavior: From Dichotomies to Relations and Interactions 20
Is It Physiological, or Is It Psychological? 20
Is It Inherited, or Is It Learned? 20
Problems with Thinking about the Biology of Behavior in Terms of Traditional Dichotomies 21
The Case of the Man Who Fell Out of Bed 21
The Case of the Chimps and the Mirrors 22
The Case of the Thinking Student 23

2.2 Human Evolution 23
Evolution and Behavior 25
Course of Human Evolution 26
Thinking about Human Evolution 30
Evolution of the Human Brain 32
Evolutionary Psychology: Understanding Mate Bonding 32
Thinking about Evolutionary Psychology 34

2.3 Fundamental Genetics 35
Mendelian Genetics 35
Chromosomes: Reproduction, Linkage, and Recombination 36
Chromosomes: Structure and Replication 37
Sex Chromosomes and Sex-Linked Traits 39
The Genetic Code and Gene Expression 40
Mitochondrial DNA 41
Modern Genetics 42

2.4 Behavioral Development: The Interaction of Genetic Factors and Experience 44
Selective Breeding of "Maze-Bright" and "Maze-Dull" Rats 44
Phenylketonuria: A Single-Gene Metabolic Disorder 45
Development of Birdsong 46

2.5 The Genetics of Human Psychological Differences 47
Development of Individuals versus Development of Differences among Individuals 47
Minnesota Study of Twins Reared Apart 47
Themes Revisited 49
Think about It 50
Key Terms 50
3 The Anatomy of the Nervous System 51

3.1 General Layout of the Nervous System 52
- Divisions of the Nervous System 52
- Meninges, Ventricles, and Cerebrospinal Fluid 54
- Blood–Brain Barrier 54

3.2 Cells of the Nervous System 56
- Anatomy of Neurons 56
- Glial Cells: The Forgotten Majority 58

3.3 Neuroanatomical Techniques and Directions 60
- Directions in the Vertebrate Nervous System 62

3.4 The Spinal Cord 64

3.5 The Five Major Divisions of the Brain 64

3.6 Major Structures of the Brain 65
- Myelencephalon 65
- Metencephalon 66
- Mesencephalon 66
- Diencephalon 67
- Telencephalon 67
- The Limbic System and the Basal Ganglia 70

Themes Revisited 74
Think about It 75
Key Terms 75
Neural Conduction and Synaptic Transmission

How Neurons Send and Receive Signals

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>Synaptic Transmission: Chemical Transmission of Signals from One Neuron to Another</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Structure of Synapses</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Synthesis, Packaging, and Transport of Neurotransmitter Molecules</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Release of Neurotransmitter Molecules</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>Activation of Receptors by Neurotransmitter Molecules</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>Reuptake, Enzymatic Degradation, and Recycling</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Glial Function and Synaptic Transmission</td>
<td>91</td>
</tr>
<tr>
<td>4.6</td>
<td>The Neurotransmitters</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Amino Acid Neurotransmitters</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Monoamine Neurotransmitters</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Acetylcholine</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>Unconventional Neurotransmitters</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>Neuropeptides</td>
<td>94</td>
</tr>
<tr>
<td>4.7</td>
<td>Pharmacology of Synaptic Transmission and Behavior</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>How Drugs Influence Synaptic Transmission</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Behavioral Pharmacology: Three Influential Lines of Research</td>
<td>95</td>
</tr>
<tr>
<td>4.8</td>
<td>Themes Revisited</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>Think about It</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>Key Terms</td>
<td>99</td>
</tr>
</tbody>
</table>

- **The Lizard, a Case of Parkinson's Disease**
 - 77

- **The Neuron's Resting Membrane Potential**
 - Recording the Membrane Potential 77
 - The Resting Membrane Potential 77
 - The Ionic Basis of the Resting Potential 78

- **Generation and Conduction of Postsynaptic Potentials**
 - 80

- **Integration of Postsynaptic Potentials and Generation of Action Potentials**
 - 81

- **Conduction of Action Potentials**
 - The Ionic Basis of Action Potentials 83
 - Refractory Periods 84
 - Axonal Conduction of Action Potentials 84
 - Conduction in Myelinated Axons 85
 - The Velocity of Axonal Conduction 85
 - Conduction in Neurons without Axons 85
 - The Hodgkin-Huxley Model and the Changing View of Dendritic Function 85
Part Three
Sensory and Motor Systems

Chapter 6
The Visual System
How We See

The Case of Mrs. Richards: Fortification Illusions and the Astronomer

Chapter 6.5
Seeing Color
Component and Opponent Processing 149
Color Constancy and the Retinex Theory 150

Chapter 6.6
Cortical Mechanisms of Vision and Conscious Awareness
Damage to Primary Visual Cortex:
Scotomas and Completion 153
The Case of the Physiological Psychologist Who Made Faces Disappear 154
Damage to Primary Visual Cortex:
Scotomas, Blindsight, and Conscious Awareness 154
The Case of D.B., the Man Confused by His Own Blindsight 154
Functional Areas of Secondary and Association Visual Cortex 155
Dorsal and Ventral Streams 155
The Case of D.F., the Woman Who Could Grasp Objects She Did Not Consciously See 157
The Case of A.T., the Woman Who Could Not Accurately Grasp Unfamiliar Objects That She Saw 158
Prosopagnosia 158
R.P., a Typical Case of Prosopagnosia 159
Conclusion 159

Themes Revisited 159
Think about It 160
Key Terms 160
7 Mechanisms of Perception: Hearing, Touch, Smell, Taste, and Attention 161
How You Know the World

The Case of the Man Who Could See Only One Thing at a Time 162

7A Principles of Sensory System Organization 162
Hierarchical Organization 162
The Case of the Man Who Mistook His Wife for a Hat 163
Functional Segregation 163
Parallel Processing 163
The Current Model of Sensory System Organization 163

7A2 The Auditory System 164
The Ear 165
From the Ear to the Primary Auditory Cortex 167
Subcortical Mechanisms of Sound Localization 167
Primary and Secondary Auditory Cortex 168
Effects of Damage to the Auditory System 170

7A5 The Somatosensory System: Touch and Pain 171
Cutaneous Receptors 171
Dermatomes 172
The Two Major Somatosensory Pathways 173
Cortical Areas of Somatosensation 174
Effects of Damage to the Primary Somatosensory Cortex 175
The Somatosensory System and Association Cortex 176
The Case of W.M., Who Reduced His Scotoma with His Hand 176
Somatosensory Agnosias 176
The Case of Aunt Betty, Who Lost Half of Her Body 176
The Perception of Pain 177
The Case of Miss C., the Woman Who Felt No Pain 177
Neuropathic Pain 179

7A4 The Chemical Senses: Smell and Taste 179
The Olfactory System 180
The Gustatory System 181
Brain Damage and the Chemical Senses 182

7A5 Selective Attention 183
Change Blindness 184
Neural Mechanisms of Attention 184
Simultanagnosia 185
Themes Revisited 185
Think about It 186
Key Terms 186
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 The Sensorimotor System</td>
<td>187</td>
</tr>
<tr>
<td>How You Move</td>
<td></td>
</tr>
<tr>
<td>The Case of Rhonda, the Dexterous Cashier</td>
<td>188</td>
</tr>
<tr>
<td>8.1 Three Principles of Sensorimotor Function</td>
<td>188</td>
</tr>
<tr>
<td>The Sensorimotor System Is Hierarchically Organized</td>
<td>188</td>
</tr>
<tr>
<td>Motor Output Is Guided by Sensory Input</td>
<td>189</td>
</tr>
<tr>
<td>The Case of G.O., the Man with Too Little Feedback</td>
<td>189</td>
</tr>
<tr>
<td>Learning Changes the Nature and Locus of Sensorimotor Control</td>
<td>189</td>
</tr>
<tr>
<td>A General Model of Sensorimotor System Function</td>
<td>189</td>
</tr>
<tr>
<td>8.2 Sensorimotor Association Cortex</td>
<td>190</td>
</tr>
<tr>
<td>Posterior Parietal Association Cortex</td>
<td>190</td>
</tr>
<tr>
<td>The Case of Mrs. S., the Woman Who Turned in Circles</td>
<td>191</td>
</tr>
<tr>
<td>Dorsolateral Prefrontal Association Cortex</td>
<td>193</td>
</tr>
<tr>
<td>8.3 Secondary Motor Cortex</td>
<td>193</td>
</tr>
<tr>
<td>Identifying the Areas of Secondary Motor Cortex</td>
<td>193</td>
</tr>
<tr>
<td>Mirror Neurons</td>
<td>194</td>
</tr>
<tr>
<td>8.4 Primary Motor Cortex</td>
<td>195</td>
</tr>
<tr>
<td>Belle: The Monkey That Controlled a Robot with Her Mind</td>
<td>197</td>
</tr>
<tr>
<td>8.5 Cerebellum and Basal Ganglia</td>
<td>197</td>
</tr>
<tr>
<td>Cerebellum</td>
<td>198</td>
</tr>
<tr>
<td>Basal Ganglia</td>
<td>198</td>
</tr>
<tr>
<td>8.6 Descending Motor Pathways</td>
<td>199</td>
</tr>
<tr>
<td>Dorsolateral Corticospinal Tract and Dorsolateral Corticorubrospinal Tract</td>
<td>199</td>
</tr>
<tr>
<td>Ventromedial Corticospinal Tract and Ventromedial Cortico-brainstem-spinal Tract</td>
<td>199</td>
</tr>
<tr>
<td>Comparison of the Two Dorsolateral Motor Pathways and the Two Ventromedial Motor Pathways</td>
<td>201</td>
</tr>
<tr>
<td>8.7 Sensorimotor Spinal Circuits</td>
<td>202</td>
</tr>
<tr>
<td>Muscles</td>
<td>202</td>
</tr>
<tr>
<td>Receptor Organs of Tendons and Muscles</td>
<td>203</td>
</tr>
<tr>
<td>Stretch Reflex</td>
<td>204</td>
</tr>
<tr>
<td>Withdrawal Reflex</td>
<td>205</td>
</tr>
<tr>
<td>Reciprocal Innervation</td>
<td>205</td>
</tr>
<tr>
<td>Recurrent Collateral Inhibition</td>
<td>207</td>
</tr>
<tr>
<td>Walking: A Complex Sensorimotor Reflex</td>
<td>208</td>
</tr>
<tr>
<td>8.8 Central Sensorimotor Programs</td>
<td>208</td>
</tr>
<tr>
<td>Central Sensorimotor Programs Are Capable of Motor Equivalence</td>
<td>209</td>
</tr>
<tr>
<td>Sensory Information That Controls Central Sensorimotor Programs Is Not Necessarily Conscious</td>
<td>209</td>
</tr>
<tr>
<td>Central Sensorimotor Programs Can Develop without Practice</td>
<td>209</td>
</tr>
<tr>
<td>Practice Can Create Central Sensorimotor Programs</td>
<td>210</td>
</tr>
<tr>
<td>Functional Brain Imaging of Sensorimotor Learning</td>
<td>210</td>
</tr>
<tr>
<td>The Case of Rhonda, Revisited</td>
<td>211</td>
</tr>
<tr>
<td>Themes Revisited</td>
<td>212</td>
</tr>
<tr>
<td>Think about It</td>
<td>212</td>
</tr>
<tr>
<td>Key Terms</td>
<td>213</td>
</tr>
</tbody>
</table>
Part Four

Brain Plasticity

9 Development of the Nervous System 214
From Fertilized Egg to You

The Case of Genie 215

9.1 Phases of Neurodevelopment 215
Induction of the Neural Plate 215
Neural Proliferation 217
Migration and Aggregation 217
Axon Growth and Synapse Formation 219
Neuron Death and Synapse Rearrangement 221

9.2 Postnatal Cerebral Development in Human Infants 223
Postnatal Growth of the Human Brain 223
Development of the Prefrontal Cortex 224

9.3 Effects of Experience on the Early Development, Maintenance, and Reorganization of Neural Circuits 225
Early Studies of Experience and Neurodevelopment: Deprivation and Enrichment 225
Competitive Nature of Experience and Neurodevelopment: Ocular Dominance Columns 225
Effects of Experience on Topographic Sensory Cortex Maps 226
Mechanisms by Which Experience Might Influence Neurodevelopment 226

9.4 Neuroplasticity in Adults 227
Neurogenesis in Adult Mammals 227
Effects of Experience on the Reorganization of the Adult Cortex 228

9.5 Disorders of Neurodevelopment: Autism and Williams Syndrome 229
Autism 229
The Case of Alex: Are You Ready to Rock? 229
Cases of Amazing Savant Abilities 230
Williams Syndrome 232
The Case of Anne Louise McGarrah: The Uneven Abilities of Those with Williams Syndrome 233
Epilogue 234

Themes Revisited 235
Think about It 235
Key Terms 235
<table>
<thead>
<tr>
<th>Chapter 10: Brain Damage and Neuroplasticity</th>
<th>236</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can the Brain Recover from Damage?</td>
<td></td>
</tr>
</tbody>
</table>

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Causes of Brain Damage</td>
<td>237</td>
</tr>
<tr>
<td>Brain Tumors</td>
<td>237</td>
</tr>
<tr>
<td>Cerebrovascular Disorders: Strokes</td>
<td>238</td>
</tr>
<tr>
<td>Closed-Head Injuries</td>
<td>240</td>
</tr>
<tr>
<td>The Case of Jerry Quarry, Ex-Boxer</td>
<td>241</td>
</tr>
<tr>
<td>Infections of the Brain</td>
<td>241</td>
</tr>
<tr>
<td>Neurotoxins</td>
<td>242</td>
</tr>
<tr>
<td>Genetic Factors</td>
<td>242</td>
</tr>
<tr>
<td>Programmed Cell Death</td>
<td>243</td>
</tr>
<tr>
<td>10.2 Neuropsychological Diseases</td>
<td>243</td>
</tr>
<tr>
<td>Epilepsy</td>
<td>243</td>
</tr>
<tr>
<td>The Subtlety of Complex Partial Seizures: Two Cases</td>
<td>244</td>
</tr>
<tr>
<td>Parkinson’s Disease</td>
<td>245</td>
</tr>
<tr>
<td>Huntington’s Disease</td>
<td>246</td>
</tr>
<tr>
<td>Multiple Sclerosis</td>
<td>246</td>
</tr>
<tr>
<td>Alzheimer’s Disease</td>
<td>247</td>
</tr>
<tr>
<td>10.3 Animal Models of Human Neuropsychological Diseases</td>
<td>249</td>
</tr>
<tr>
<td>Kindling Model of Epilepsy</td>
<td>249</td>
</tr>
<tr>
<td>Transgenic Mouse Model of Alzheimer’s Disease</td>
<td>250</td>
</tr>
<tr>
<td>MPTP Model of Parkinson’s Disease</td>
<td>250</td>
</tr>
<tr>
<td>The Case of the Frozen Addicts</td>
<td>250</td>
</tr>
<tr>
<td>10.4 Neuroplastic Responses to Nervous System Damage: Degeneration,</td>
<td>251</td>
</tr>
<tr>
<td>Regeneration, Reorganization, and Recovery</td>
<td></td>
</tr>
<tr>
<td>Neural Degeneration</td>
<td>251</td>
</tr>
<tr>
<td>Neural Regeneration</td>
<td>253</td>
</tr>
<tr>
<td>Neural Reorganization</td>
<td>254</td>
</tr>
<tr>
<td>Recovery of Function after Brain Damage</td>
<td>255</td>
</tr>
<tr>
<td>10.5 Neuroplasticity and the Treatment of Nervous System Damage</td>
<td>257</td>
</tr>
<tr>
<td>Reducing Brain Damage by Blocking Neurodegeneration</td>
<td>257</td>
</tr>
<tr>
<td>Promoting Recovery from CNS</td>
<td>257</td>
</tr>
<tr>
<td>Promoting Recovery from CNS</td>
<td>257</td>
</tr>
<tr>
<td>Damage by Neurotransplantation</td>
<td>258</td>
</tr>
<tr>
<td>The Case of Roberto Garcia d’Orta: The Lizard Gets an Autotransplant</td>
<td>259</td>
</tr>
<tr>
<td>Promoting Recovery from CNS</td>
<td>259</td>
</tr>
<tr>
<td>Damage by Rehabilitative Training</td>
<td>259</td>
</tr>
<tr>
<td>The Cases of Tom and Philip: Phantom Limbs and Ramachandran</td>
<td>260</td>
</tr>
<tr>
<td>The Ironic Case of Professor P.: Recovery</td>
<td>261</td>
</tr>
<tr>
<td>Themes Revisited</td>
<td>262</td>
</tr>
<tr>
<td>Think about It</td>
<td>262</td>
</tr>
<tr>
<td>Key Terms</td>
<td>263</td>
</tr>
</tbody>
</table>
Contents

11 Learning, Memory, and Amnesia
How Your Brain Stores Information 264

11.1 Amnesic Effects of Bilateral Medial Temporal Lobectomy 265
The Case of H.M., the Man Who Changed the Study of Memory 265
Formal Assessment of H.M.’s Anterograde Amnesia 266
Scientific Contributions of H.M.’s Case 267
Medial Temporal Lobe Amnesia 268
Semantic and Episodic Memories 269
The Case of K.C., the Man Who Can’t Time Travel 269
The Case of the Clever Neuropsychologist: Spotting Episodic Memory Deficits 270
Effects of Cerebral Ischemia on the Hippocampus and Memory 270
The Case of R.B., the Product of a Bungled Operation 270

11.2 Amnesia of Korsakoff’s Syndrome 271
The Up-Your-Nose Case of N.A. 271

11.3 Amnesia of Alzheimer’s Disease 272

11.4 Amnesia after Concussion: Evidence for Consolidation 272
Posttraumatic Amnesia 272
Gradients of Retrograde Amnesia and Memory Consolidation 273
Reconsolidation 274
The Hippocampus and Consolidation 275

11.5 Neuroanatomy of Object-Recognition Memory 275
Monkey Model of Object-Recognition Amnesia: The Delayed Nonmatching-to-Sample Test 276
The Delayed Nonmatching-to-Sample Test for Rats 277
Neuroanatomical Basis of the Object-Recognition Deficits Resulting from Medial Temporal Lobectomy 278

11.6 The Hippocampus and Memory for Spatial Location 281
Hippocampal Lesions Disrupt Spatial Memory 281
Hippocampal Place Cells 281
Comparative Studies of the Hippocampus and Spatial Memory 282
Theories of Hippocampal Function 282

11.7 Where Are Memories Stored? 283
Inferotemporal Cortex 283
Amygdala 283
Prefrontal Cortex 284
The Case of the Cook Who Couldn’t Cerebellum and Striatum 284

11.8 Synaptic Mechanisms of Learning and Memory 285
Long-Term Potentiation 285
Induction of LTP: Learning 287
Maintenance and Expression of LTP: Storage and Recall 288
Variability of LTP 290

11.9 Conclusion: Infantile Amnesia and the Biopsychologist Who Remembered H.M. 290
Infantile Amnesia 290
Posttraumatic Amnesia and Episodic Memory 291
The Case of R.M., the Biopsychologist Who Remembered H.M. 291
Themes Revisited 291
Think about It 292
Key Terms 292
Part Five
Biopsychology of Motivation

12 Hunger, Eating, and Health
Why Do Many People Eat Too Much?

The Case of the Man Who Forgot Not to Eat

12.1 Digestion, Energy Storage, and Energy Utilization
Digestion
Energy Storage in the Body
Three Phases of Energy Metabolism

12.2 Theories of Hunger and Eating: Set Points versus Positive Incentives
Set-Point Assumption
Glucostatic and Lipostatic Set-Point Theories of Hunger and Eating
Problems with Set-Point Theories of Hunger and Eating
Positive-Incentive Perspective

12.3 Factors That Determine What, When, and How Much We Eat
Factors That Determine What We Eat
Factors That Influence When We Eat
Factors That Influence How Much We Eat

12.4 Physiological Research on Hunger and Satiety
Role of Blood Glucose Levels in Hunger and Satiety
Myth of Hypothalamic Hunger and Satiety Centers
Role of the Gastrointestinal Tract in Satiety
Hunger and Satiety Peptides
Serotonin and Satiety
Prader-Willi Syndrome: The Case of Miss A.

12.5 Body Weight Regulation: Set Points versus Settling Points
Set-Point Assumptions about Body Weight and Eating
Set Points and Settling Points in Weight Control

12.6 Human Obesity: Causes, Treatments, and Mechanisms
Why Is There an Epidemic of Obesity?
Why Do Some People Become Obese While Others Do Not?
Why Are Weight-Loss Programs Typically Ineffective?
Leptin and the Regulation of Body Fat
The Case of the Child with No Leptin
Serotonergic Drugs and the Treatment of Obesity

12.7 Anorexia and Bulimia Nervosa
The Relation between Anorexia and Bulimia
Anorexia and Positive Incentives
Anorexia Nervosa: A Hypothesis
The Case of the Anorexic Student

Themes Revisited
Think about It
Key Terms
Hormones and Sex
What's Wrong with the Mamawawa?

The Developmental and Activational Effects of Sex Hormones 321
The Men-Are-Men-and-Women-Are-Women Assumption 321

The Neuroendocrine System 321
Glands 322
Classes of Hormones 322
Gonads 322
Sex Steroids 322
Hormones of the Pituitary 323
Female Gonadal Hormone Levels Are Cyclic; Male Gonadal Hormone Levels Are Steady 323
Neural Control of the Pituitary 324
Control of the Anterior and Posterior Pituitary by the Hypothalamus 324
Discovery of Hypothalamic Releasing Hormones 325
Regulation of Hormone Levels 326
Pulsatile Hormone Release 326
A Summary Model of Gonadal Endocrine Regulation 326

Hormones and Sexual Development 327
Fetal Hormones and the Development of Reproductive Organs 327
Sex Differences in the Brain 329
Perinatal Hormones and Behavioral Development 331
Puberty: Hormones and the Development of Secondary Sex Characteristics 331

Three Cases of Exceptional Human Sexual Development 333
The Case of Anne S., the Woman Who Wasn't 333
The Case of the Little Girl Who Grew into a Boy 334
The Case of the Twin Who Lost His Penis 335
Do the Exceptional Cases Prove the Rule? 336

Effects of Gonadal Hormones on Adults 336
Male Reproduction-Related Behavior and Testosterone 336
The Case of the Man Who Lost and Regained His Manhood 337
Female Reproduction-Related Behavior and Gonadal Hormones 337
Anabolic Steroid Abuse 338
The Neuroprotective Effects of Estradiol 340

Neural Mechanisms of Sexual Behavior 340
Structural Differences between the Male Hypothalamus and the Female Hypothalamus 341
The Hypothalamus and Male Sexual Behavior 342
The Hypothalamus and Female Sexual Behavior 342

Sexual Orientation, Hormones, and the Brain 343
Sexual Orientation and Genes 343
Sexual Orientation and Early Hormones 343
What Triggers the Development of Sexual Attraction? 344
Is There a Difference in the Brains of Homosexuals and Heterosexuals? 344
Transsexualism 344
The Independence of Sexual Orientation and Sexual Identity 345
Themes Revisited 345
Think about It 346
Key Terms 346
Sleep, Dreaming, and Circadian Rhythms

How Much Do You Need to Sleep?

The Case of the Woman Who Wouldn't Sleep

14.1 The Psychophysiological Measures and Stages of Sleep

The Three Standard Psychophysiological Measures of Sleep
Four Stages of Sleep EEG

14.2 REM Sleep and Dreaming

Testing Common Beliefs about Dreaming
The Interpretation of Dreams

14.3 Why Do We Sleep, and Why Do We Sleep When We Do?

14.4 Comparative Analysis of Sleep

14.5 Circadian Sleep Cycles

Free-Running Circadian Sleep–Wake Cycles
Jet Lag and Shift Work

14.6 Effects of Sleep Deprivation

Personal Experience of Sleep Deprivation: A Cautionary Note
Two Classic Sleep-Deprivation Case Studies
The Case of the Sleep-Deprived Students
The Case of Randy Gardner
Experimental Studies of Sleep Deprivation in Humans
Sleep-Deprivation Studies with Laboratory Animals
REM-Sleep Deprivation
Sleep Deprivation Increases the Efficiency of Sleep

14.7 Four Areas of the Brain Involved in Sleep

Two Areas of the Hypothalamus Involved in Sleep
The Case of Constantin von Economo, the Insightful Neurologist
Reticular Activating System and Sleep
Reticular REM-Sleep Nuclei

14.8 The Circadian Clock: Neural and Molecular Mechanisms

Location of the Circadian Clock in the Suprachiasmatic Nuclei
Mechanisms of Entrainment
Genetics of Circadian Rhythms

14.9 Drugs That Affect Sleep

Hypnotic Drugs
Antihypnotic Drugs
Melatonin

14.10 Sleep Disorders

Insomnia
Mr. B., the Case of Iatrogenic Insomnia
Hypersomnia
REM-Sleep–Related Disorders
The Case of the Sleeper Who Ran Over Tackle

14.11 The Effects of Long-Term Sleep Reduction

Long-Term Reduction of Nightly Sleep
Long-Term Sleep Reduction by Napping
Long-Term Sleep Reduction: A Personal Case Study
The Case of the Author Who Reduced His Sleep
Effects of Shorter Sleep Times on Health
Conclusion

Themes Revisited
Think about It
Key Terms
Contents

15 Drug Addiction and the Brain's Reward Circuits
Chemicals That Harm with Pleasure

373 The Case of the Drugged High School Teachers

374 Basic Principles of Drug Action
Drug Administration and Absorption
Drug Penetration of the Central Nervous System
Mechanisms of Drug Action
Drug Metabolism and Elimination
Drug Tolerance
Drug Withdrawal Effects and Physical Dependence
Addiction: What Is It?

377 Role of Learning in Drug Tolerance
Contingent Drug Tolerance
Conditioned Drug Tolerance
Thinking about Drug Conditioning

379 Five Commonly Abused Drugs
Tobacco
Alcohol
Marijuana
Cocaine and Other Stimulants
The Opiates: Heroin and Morphine
Comparison of the Hazards of Tobacco, Alcohol, Marijuana, Cocaine, and Heroin
The Drug Dilemmas: Striking the Right Balance

383 Biopsychological Approaches to Theories of Addiction
Physical-Dependence and Positive-Incentive Perspectives of Addiction
From Pleasure to Compulsion: Incentive-Sensitization Theory
Relapse and Its Causes

390 Intracranial Self-Stimulation and the Pleasure Centers of the Brain
Fundamental Characteristics of Intracranial Self-Stimulation
Mesotelencephalic Dopamine System and Intracranial Self-Stimulation

393 Early Studies of Brain Mechanisms of Addiction: Dopamine
Two Key Methods for Measuring Drug-Produced Reinforcement in Laboratory Animals
Early Evidence of the Involvement of Dopamine in Drug Addiction
The Nucleus Accumbens and Drug Addiction
Support for the Involvement of Dopamine in Addiction: Evidence from the Imaging of Human Brains
Dopamine Release in the Nucleus Accumbens: Reward or Expectation of Reward?

395 Current Approaches to Brain Mechanisms of Addiction
Brain Mechanisms of Addiction: Recent Developments
Brain Structures That Mediate Addiction: The Current View

397 A Noteworthy Case of Addiction
The Case of Sigmund Freud
Themes Revisited
Think about It
Key Terms
Part Six
Disorders of Cognition and Emotion

16

Lateralization, Language, and the Split Brain
The Left Brain and the Right Brain of Language

Cerebral Lateralization of Function: Introduction
Discovery of the Specific Contributions of Left-Hemisphere Damage to Aphasia and Apraxia Tests of Cerebral Lateralization Discovery of the Relation between Speech Laterality and Handedness Sex Differences in Brain Lateralization

The Split Brain
Groundbreaking Experiment of Myers and Sperry Commissurotomy in Human Epileptics Evidence That the Hemispheres of Split-Brain Patients Can Function Independently
Cross-Cuing Doing Two Things at Once

The Z Lens Dual Mental Functioning and Conflict in Split-Brain Patients

The Case of Peter, the Split-Brain Patient Tormented by Conflict Independence of Split Hemispheres: Current Perspective

Differences between the Left and Right Hemispheres

Slight Biases versus All-or-None Hemispheric Differences Examples of Cerebral Lateralization of Function What Is Lateralized—Broad Clusters of Abilities or Individual Cognitive Processes? Anatomical Asymmetries of the Brain Theories of Cerebral Lateralization of Function: Why Did Cerebral Lateralization Evolve? The Case of W.L., the Man Who Experienced Aphasia for Sign Language Evidence of Cerebral Lateralization in Nonhumans

Cortical Localization of Language: The Wernicke-Geschwind Model
Historical Antecedents of the Wernicke-Geschwind Model The Wernicke-Geschwind Model

Evaluation of the Wernicke-Geschwind Model
Effects of Damage to Various Areas of Cortex on Language-Related Abilities Electrical Stimulation of the Cortex and Localization of Language Current Status of the Wernicke-Geschwind Model

Cognitive Neuroscience Approach to Language
Functional Brain Imaging and the Localization of Language

Cognitive Neuroscience Approach to Dyslexia
Developmental Dyslexia: Causes and Neural Mechanisms Developmental Dyslexia: Cultural Diversity and Biological Unity Cognitive Neuroscience Analysis of Reading Aloud: Deep and Surface Dyslexia The Case of N.I., the Woman Who Read with Her Right Hemisphere Themes Revisited Think about It Key Terms
Contents

17 Biopsychology of Emotion, Stress, and Health

Fear, the Dark Side of Emotion 431

17.1 Biopsychology of Emotion: Introduction 432
Early Landmarks in the Biopsychological Investigation of Emotion 432
The Mind-Blowing Case of Phineas Gage 432
A Human Case of Kluver-Bucy Syndrome 435
Emotions and the Autonomic Nervous System 436
Emotions and Facial Expression 436

17.2 Fear, Defense, and Aggression 439
Types of Aggressive and Defensive Behaviors 439
Aggression and Testosterone 441

17.3 Neural Mechanisms of Fear Conditioning 441
Amygdala and Fear Conditioning 442
Contextual Fear Conditioning and the Hippocampus 442
Lateral Nucleus of the Amygdala and Fear Conditioning 443

17.4 Stress and Health 443
The Stress Response 444
Animal Models of Stress 444
Stress and Gastric Ulcers 445
Psychoneuroimmunology: Stress, the Immune System, and the Brain 445
Early Experience of Stress 449
Stress and the Hippocampus 449

17.5 Brain Mechanisms of Human Emotion 450
Specific Role of the Amygdala in Human Emotion 450
The Case of S.P., the Woman Who Couldn't Perceive Fear 450
Specific Role of the Medial Prefrontal Lobes in Human Emotion 451
Lateralization of Emotion 451
Individual Differences in the Neural Mechanisms of Emotion 452
The Case of Charles Whitman, the Texas Tower Sniper 453

Themes Revisited 453
Think about It 454
Key Terms 454